lunes, 30 de agosto de 2010

cambio de impetu y Segunda Ley de Newton

La cantidad de movimiento, momento lineal o ímpetu es una magnitud vectorial que se define como el producto entre la masa y la velocidad en un instante determinado:  p=mv.
Cuando se pretende distinguirlo del momento angular se le llama momento lineal. La forma castellanizada momento o momento lineal también se usa, pero causa confusión con los otros significados de la palabra.
Se define como impulso a la variación de la cantidad de movimiento.
Todos los cuerpos que presentan un movimiento, tienen la característica de presentar un ímpetu, o momento, cuando un cuerpo se encuentra acelerado, es porque hay una fuerza externa que ha provocado una aceleración, es por ello que podemos decir que el cuerpo ha sido impulsado. El impulso corresponde a la fuerza que se aplico a un cierto cuerpo para que este se desplazase, por lo que podemos decir que el impulso es una magnitud vectorial, la cual está dada por:
I=F*"t
El momento, ímpetu o cantidad de movimiento, es una magnitud vectorial, al igual que el impulso, está dado por:
P="mv
Y bien si sabemos que:
I=F*"t
F=ma
F=m"v/"t
F"t="mv
Entonces:
I=P1-P2
I="P
 http://html.rincondelvago.com/impetu.html

SEGUNDA LEY DE NEWTON

La Segunda Ley de Newton se puede resumir como sigue: La aceleracion de un objeto es directamente proporcional a la fuerza neta que actúa sobre él, e inversamente proporcional a su masa.
La dirección de la aceleracion es la misma de la fuerza aplicada.
a representa la aceleración, m la masa y F la fuerza neta. Por fuerza neta se entiende la suma vectorial de todas las fuerzas que actúan sobre el cuerpo.
a Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo . La constante de proporcionalidad es la masa del cuerpo , de manera que podemos expresar la relación de la siguiente manera :
F=ma
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a 
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N . Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2 , o sea,
1 N = 1 Kg · 1 m/s2
La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a . Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad , es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal . Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir
F = d p /dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m· v )/dt = m·d v /dt + dm/dt · v
Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como habiamos visto anteriormente.

Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento . Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = d p /dt
es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo ( la derivada de una constante es cero ). Esto es el Principio de conservación de la cantidad de movimiento : si la fuerza total que actua sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo .

1 comentario: